Hesperia Community Schools

Grade:		Teacher:			Course:	
Timeline	$\begin{gathered} \text { GLCE"s/HSCE's } \\ \text { CCSS } \end{gathered}$	Content What topic(s) is being covered? What do students need to know?	Essential Skills: What do students have to be able to do to connect the content to the skills?	Vocabulary	Assessment: What evidence (products and/or performances is collected to establish that the content and skills have been learned?	Resources What materials, texts, videos, internet, or software support instruction?
S1W1 Through S1W15	G1.1.1 Solve multistep problems and construct proofs involving vertical angles, linear pairs of angles, supplementary angles, complementary angles, and right angles. G1.1.2 Solve multistep problems and construct proofs involving corresponding angles, alternate interior angles, alternate exterior angles, and sameside (consecutive) interior angles. G1.1.5 Given a line segment in terms of its endpoints in the coordinate plane, determine its	Chapter 1 Pgs. 6-65 1-1 Understanding Lines and Planes 1-2 Measuring and Constructing Segments 1-3 Measuring and Constructing Angles 1-4 Pairs of Angles 1-5 Using Formulas in Geometry 1-6 Midpoint and Distance in Geometry 1-7 Transformations in the Coordinate Plane	TLW solve multistep problems and write proofs involving angles: vertical angles, linear pairs of angles, supplementary, complementary and right angles.	Segment, angle, distance, midpoint, bisector, complementary, supplementary, vertical angles	Gradient Tests (50, 100, 200)	Holt Geometry, Michigan Ed. 2007 Powerpoint presentations, On-line textbook and resources chapter 1

Hesperia Community Schools

Hesperia Community Schools

Hesperia Community Schools

Grade		Teacher:			Course:		
	"If..., then..." statement (assuming the hypothesis and ending with the conclusion) and that proving the contrapositive is equivalent. L3.3.2 Construct proofs by contradiction. Use counterexamples, when appropriate, to disprove a statement. L4.1.1 Distinguish between inductive and deductive reasoning, identifying and providing examples of each.		theorems, counterexamples, and proof in the logical structure of mathematics. TLW construct proofs by contradiction. TLW explain the difference between a necessary and a sufficient condition within the statement of a theorem. TLW differentiate between statistical arguments and logical arguments.				
S1W1 Through S1W15	G1.1.1 Solve multistep problems and construct proofs involving vertical angles, linear pairs of angles, supplementary angles,	Geometry Holt Chapter 3 Pgs. 146-206 3-1 Lines and Angles 3-2 Angles Formed by parallel Lines and Transversals 3-3 Proving Line Parallel 3-4 Perpendicular Lines 3-5 Slopes of Lines	TLW solve multistep problems and write proofs involving angles: corresponding, alternate interior, alternate exterior and same-side (consecutive) interior angles. TLW perform and justify	Alternate exterior angles, Alternate interior angles, Corresponding angles, Distance from a point to a line, Parallel lines, Parallel planes,	$\begin{aligned} & \text { Gradient Tests }(50, \\ & 100,200) \end{aligned}$		

Hesperia Community Schools

Hesperia Community Schools

Grade:		Teacher:			Course:	
	types of triangles. G2.3.1 Prove that triangles are congruent using the SSS, SAS, ASA, and AAS criteria and that right triangles are congruent using the hypotenuse-leg criterion. G2.3.2 Use theorems about congruent triangles to prove additional theorems and solve problems, with and without use of coordinates.		criterion TLW use theorems about congruent triangles to prove additional theorems and solve problems, with and without the use of coordinates. TLW solve multistep problems and construct proofs about properties of medians, altitudes, and perpendicular bisectors to sides of a triangle, and the angle bisectors of a triangle. TLW prove that triangles are similar by using SSS, SAS, and AA conditions for similarity. TLW use theorems about similar triangles to solve problems with and without use of coordinates.	triangle, Obtuse triangle, Remote interior angle, Right triangle, Scalene triangle, Triangle rigidity, Vertex angle.		
S1W5 Through S1W17	G1.2.3 Know a proof of the Pythagorean Theorem, and use the Pythagorean Theorem and its converse to solve multi-step	Geometry Holt Chapter 5 Pgs. 297-370 5-1 Perpendicular and Angle Bisectors 5-2 Bisectors of Triangles 5-3 Medians and Altitudes of Triangles 5-4 The Triangle Midsegment Theorem	TLW know a proof of the Pythagorean Theorem and use the Pythagorean Theorem and its converse to solve multistep problems. TLW prove and use the relationships among the side lengths and the angles	Altitude of a triangle, Centroid of a triangle, Circumcenter of a triangle, Circumscribed, Concurrent, Equidistant, Incenter of a triangle, Indirect	$100,200)$	

Hesperia Community Schools

Hesperia Community Schools

Hesperia Community Schools

Grade:		Teacher:			Course:	
	conditions for similarity. G2.3.4 Use theorems about similar triangles to solve problems with and without use of coordinates.	7-2 Ratios in Similar Polygons 7-3 Triangle Similarity: AA, SSS, and SAS 7-4 Applying Properties of Similar Triangles 7-5 Using Proportional Relationships 7-6 Dilations and Similarity in the Coordinate Plane	another or one threedimensional figure to another, on the length, area, and volume of the figures is to multiply each by k, k2, and k3, respectively. TLW apply the theorem stating that the effect of a scale factor of k relating one two-dimensional figure to another or one threedimensional figure to another, on the length, area, and volume of the figures is to multiply each by $\mathrm{k}, \mathrm{k} 2$, and k 3 respectively.	ratio, scale, scale drawing, scale factor, similar, similar polygons, similarity ratio		
S2W2 Through S2W16	G1.3.1 Define the sine, cosine, and tangent of acute angles in a right triangle as ratios of sides. Solve problems about angles, side lengths, or areas using trigonometric ratios in right triangles. G1.3.2 Know and use the Law of Sines and the Law of Cosines and use them to solve problems. Find the area of	Geometry Holt Chapter 8 Pgs. 515-582 8-1 Similarity in Right Triangles 8-2 Trigonometric Ratios 8-3 Solving Right Triangles 8-4 Angles of Elevation and Depression 8-5 Law of sines and Law of cosines 8-6 Vectors	TLW define the sine, cosine, and tangent of acute angles in a right triangle as ratios of sides, and solve problems about angles, side lengths, or areas using trigonometric ratios in right triangles. TLW determine the exact values of sine, cosine, and tangent for $0^{\circ}, 30^{\circ}, 45^{\circ}, 60^{\circ}$, and their integer multiples and apply in various contexts. TLW use vectors to represent quantities that have magnitude and direction, interpret direction	Angle of depression, angle of elevation, component form, cosine, direction, equal vectors, geometric mean, magnitude parallel vectors, resultant vector, sine tangent trigonometric ratio, vector	$\begin{aligned} & \text { Gradient Tests }(50, \\ & 100,200) \end{aligned}$	

Hesperia Community Schools

Hesperia Community Schools

Grade:		Teacher:			Course:	
	to multiply each by k, $k 2$, and $k 3$, respectively.					
S2W7 Through S2W18	G1.6.2 Solve problems and justify arguments about chords and lines tangent to circles. G1.6.3 Solve problems and justify arguments about central angles, inscribed angles, and triangles in circles. G1.6.4 Know and use properties of arcs and sectors, and find lengths of arcs and areas of sectors.	Geometry Holt Chapter 11 Pgs. 743-814 11-1 Lines That Intersect Circles 11-2 Arcs and Chords 11-3 Sector Area and Arc Length 11-4 Inscribed Angles 11-5 Angle Relationships in Circles 11-6 Segment Relationships in Circles 11-7 Circles in the Coordinate Plane	TLW solve multistep problems involving circumference and area of circles. TLW solve problems and justify arguments about chords. TLW solve problems and justify arguments about central angles, inscribed angles, and triangles in circles. TLW use properties of arcs and sectors and find lengths of arcs and areas of sectors.	Adjacent arcs, arc, arc length, central angle, chord, common tangent, concentric circles, congruent arcs, congruent circles, exterior of a circle, external secant segment, inscribed angle, intercepted arc, minor arc, major arc, point of tangency, secant, secant segment, sector of a circle, semicircle, subtend, tangent of a circle, tangent circles, tangent segment	Gradient Tests (50, 100, 200)	
S1W1 Through S1W15	L1.2.3 Use vectors to represent quantities that have magnitude and direction, interpret direction and magnitude of a vector numerically, and	Geometry Holt Chapter 12 Pgs. 821-894 12-1 Reflections 12-2 Translations 12-3 Rotations 12-4 Compositions of Transformations 12-5 Symmetry 12-6 Tessellations 12-7 Dilations	TLW define reflection, rotation, translation, and glide reflection and find the image of a figure under a given isometry. Given two figures that are images of each other under an isometry, TLW find the isometry and describe it completely.	Center of dilation, composition of transformations, enlargement, frieze pattern, glide reflection, glide reflection symmetry, isometry, line symmetry, line of symmetry, reduction, regular	Gradient Tests (50, 100, 200)	

Hesperia Community Schools
Grade:
Teacher:
Course:

